\$6.6 Anomalies and Goldstone Bosons 5U(3) × 5U(3) global symmetry of QCD is spontaneously broken to su(3) isospin -> 't Hooft anomaly matching gives following spectrum in UV: · weakly gauge SU(3) × SU(3) symmetry -s anomalies must be cancelled by fictituous spectator fermions · massless fermions and SU(Nc) gange bosons while the massless spectrum in IR is: · fictituous gauge bosons and spectator fermions · a set of Goldstone boson fields Za (fermionic bound states are massive due to spontaneous symmetry breaking) -> anomaly of effective field theory of Goldstone bosons must reproduce the original UV anomaly: $\mathcal{J}_{\mathcal{S}}(\mathbf{x}) [\overline{\boldsymbol{\zeta}}, A] = \mathcal{G}_{\mathcal{S}}[\mathbf{x}; A]$

A an
$$f_{5}$$
 runs over values i labelling generators
Y: of unbroken symmetry H, and values
a labelling broken symmetry generators X a
(associated with Goldstone bosons ta)
Some details of Goldstone bosons:
symmetry breaking $G \rightarrow HcG$
 $\sum_{m} h_{nm} \langle \Phi_{m}(x) \rangle_{VAC} = \langle \Phi_{n}(x) \rangle_{VAC}$ (1)
 H
write $\Phi_{n}(x) = \sum_{m} Y_{nm}(x) \overline{\Phi}(x)$
with $\gamma \in G$ and $\overline{\Phi}$ is a field with me
Goldstone modes (previously $\overline{\Phi} = (0,0,0,\Phi_{y})$)
As $\langle \Phi_{m}(x) \rangle_{VAC}$ is H-invariant
 $-\infty$ can take $\overline{\Phi} = h^{-1}\gamma^{-1}\Phi$ as well as
 $\overline{\Phi} = \gamma^{-1}\Phi$
 $\rightarrow \gamma$ is anly defined up to right
multiplication by an element of H
(Hrus $\gamma_{1} \sim \gamma_{2}$ iff. $\gamma_{1} = \gamma_{2}h$, heH)
 \rightarrow element of "right coset" G/H
Can write $g = \exp[i \sum_{n} \gamma_{n} \chi_{n}] \exp[i \sum_{n} \Theta_{n} \chi_{n}]$

for general element
$$g \in G$$
 with
 $[Y_i, Y_i] = i \sum_{k} C_{ijk} Y_k$, $Y_i \in H$
 $[Y_i, X_a] = i \sum_{k} C_{abi} X_k$, $X_a \in G/H$
 $[X_a, X_b] = i \sum_{i} C_{abi} Y_i + i \sum_{e} C_{abe} X_e$
 $\rightarrow Y(x) = \exp\left[i \sum_{a} \overline{\beta}_{a}(x)X_a\right]$
Goldstone boson field
Under symmetry G, Goldstono bosons trf. as
 $\phi(x) \mapsto \phi'(x) = g \phi(x) = g \gamma(\overline{\gamma}(x)) \overline{\phi}(x)$
 $use g \gamma(\overline{\gamma}(x)) = \overline{\gamma(\overline{\gamma}'(x))} u(\overline{\gamma}(x), \gamma)$ (2)
 $\in G/H$ $\in H^1$
 $\rightarrow \phi'(x) = \gamma(\overline{\gamma}'(x)) \overline{\phi}'(x)$
 $g'(x) = h(\overline{\gamma}(x), g) \overline{\phi}(x)$
For example, in the cose of global
 $su(3) \times su(3)$ symmetry of QCD we have:
 $\left(\frac{y}{s}\right) \mapsto \exp\left[i \sum_{a} (\Theta_a^v \lambda_a + \Theta_a^A \lambda_a \gamma_5)\right] \left(\frac{y}{s}\right)$
and $\gamma(x) = \exp\left(-i \sqrt{s} \sum_{a} \overline{\gamma}_a(x) \lambda_a\right)$

Under SU(3) × SU(3) transformations we have : $\mathcal{U}(\mathbf{x}) \longmapsto \exp\left(i\sum_{\mathbf{a}} \mathcal{T}_{\mathbf{a}} \mathcal{O}_{\mathbf{a}}^{R}\right) \mathcal{U}(\mathbf{x}) \exp\left(-i\sum_{\mathbf{a}} \mathcal{T}_{\mathbf{a}} \mathcal{O}_{\mathbf{a}}^{L}\right) \quad (3)$ where $U(x) = \exp(2i\sum_{n} T_{n}(x)\lambda_{n})$ -> U is in (3,3) rep. of SU(3) × SU(3) -> can construct (su(3) x su(3))-inv. Lagrangians: $Z_{\perp} deviv = -\frac{1}{16} F^2 T_r \left\{ \partial_{\perp} U \partial^{\perp} U^{\dagger} \right\}$ (higher deviv. terms analogous) We are searching for anomalous term $\mathcal{J}(x) \prod [7,0] = \mathcal{G}_{s}[x; A_{7}]$ with $\mathcal{T}_{\mathcal{S}}(x) = \mathcal{T}_{\mathcal{S}}^{\mathcal{A}}(x) + \mathcal{T}_{\mathcal{S}}^{\mathcal{S}}(x)$ $-i \int_{S}^{A} (x) = -\frac{2}{2\pi} \frac{S}{SA_{nu}(x)} - C_{N} + A_{nu}(x) \frac{S}{SA_{nu}(x)}$ $\int_{\mathcal{S}} f(x) \exp(i f_{\mathcal{S}} X_{\alpha}) = \exp(i f_{\alpha}(x) X_{\alpha}) \mathcal{O}_{si}(x) Y_{i}$ $- \prod_{s} \exp(i \tilde{f}_{a}(x) X_{a})$ (infinitesimal limit of eq. (2))

In the case of
$$G = SU(3) \times SU(3)$$
,
 $T[3,0]$ is known as the
Wess-Zumino - Witten term: $T[3,0] = I_{WZW}[U]$
We shall construct $I_{WZW}[U]$!
think of spacetime as $S^{4} = \mathbb{R}^{4}$
(require $3a(x) \xrightarrow{x \to \infty} c \in \mathbb{R}$ for any direction
 \rightarrow include infinity as a point)
Thus we have:
 $3a: S^{4} \longrightarrow G/H$
If $T_{4}(G/H) = 0$, we can continuously
deform the map $3a(x)$ to $3a(x) = c \forall x$:
introduce $T_{4}(x;s)$ defined for $0 \ge s \ge 1$, with
 $3a(x;0) = 3a(x)$ and $3a(x;1) = c$
Now $T_{4}(SU(M)) = 0$ for $N \ge 3$!
 \rightarrow For $G = SU(3) \times SU(3)$ and $H = SU(2)$,
 $U(x)$ can be extended to a map $U(x)$
from $B_{5} = \{(x^{*}, s) \mid x^{*} \in S^{4}, s \in [0, 1]\}$
to $G/H = SU(3)$

Now consider the following function formed
from
$$U(x)$$
:

$$W(x) = -\frac{i}{240\pi^{2}} \varepsilon^{i} \delta^{i} \kappa^{p} \operatorname{Tr} \left\{ \overline{u}^{i} \frac{2u}{2y} u^{i} \frac{2u}{2$$

$$\rightarrow \text{ integrate by parts}$$

$$\delta I_{WZW} = -\frac{i}{48\pi^2} \int_{\Sigma} z^{i} \delta^{iR} \frac{m}{2} Tr \left\{ u^{i} \frac{2u}{2Y_{i}} - u^{i} \frac{2u}{2Y_{i}} u^{i} \delta u \right\}$$

$$= \text{surface term}$$

$$Thus we can include I_{WZW} [u] as a
term in our 4d action.
$$Defining \sum_{a} 2a ia = \frac{12}{F}, we can
write in the limit of small neon
fields:
$$u(i) \rightarrow \frac{8}{15\pi^{2}} F_{\pi}^{5} z^{i} \delta^{iR} Tr \left\{ \frac{2B}{2Y_{i}}, \frac{2B}$$$$$$